Contact Quantities and Non-Equilibrium Entropy of Discrete Systems
نویسندگان
چکیده
منابع مشابه
On the (Boltzmann) entropy of non-equilibrium systems
Boltzmann defined the entropy of a macroscopic system in a macrostate M as the log of the volume of phase space (number of microstates) corresponding to M. This agrees with the thermodynamic entropy of Clausius when M specifies the locally conserved quantities of a system in local thermal equilibrium (LTE). Here we discuss Boltzmann’s entropy, involving an appropriate choice of macro-variables,...
متن کاملA Characterization of Conserved Quantities in Non-Equilibrium Thermodynamics
The well-known Noether theorem in Lagrangian and Hamiltonian mechanics associates symmetries in the evolution equations of a mechanical system with conserved quantities. In this work, we extend this classical idea to problems of non-equilibrium thermodynamics formulated within the GENERIC (General Equations for Non-Equilibrium Reversible-Irreversible Coupling) framework. The geometric meaning o...
متن کاملReconstructing equilibrium entropy and enthalpy profiles from non-equilibrium pulling.
The Jarzynski identity can be applied to instances when a microscopic system is pulled repeatedly but quickly along some coordinate, allowing the calculation of an equilibrium free energy profile along the pulling coordinate from a set of independent non-equilibrium trajectories. Using the formalism of Wiener stochastic path integrals in which we assign temperature-dependent weights to Langevin...
متن کاملTentative statistical interpretation of non-equilibrium entropy
We suggest a certain statistical interpretation for the entropy produced in driven thermodynamic processes. The exponential function of the irreversible entropy re-weights the probability of the standard Ornstein-Uhlenbeck-type thermodynamic fluctuations. ∗E-mail: [email protected]
متن کاملEntropy of infinite systems and transformations
The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Non-Equilibrium Thermodynamics
سال: 2009
ISSN: 0340-0204,1437-4358
DOI: 10.1515/jnetdy.2009.005